Kissimmee Watershed Planning and Operations Project

Model Evaluation for MODHMS

Sorab Panday, Joe Hughes

Special Channel Section Types

Hydraulic Structures Simulation Capability

CULVERTS:

Designs:

- Box
- Pipe
- Embedded
- Countersunk
- With Weirs/baffles
- Arrayed
- Inlet/Outlet drops

GATES:

WEIRS:

Designs:

- Rectangular
- Triangular
- Notched
- Finger Weirs

REGULATING STRUCTURES:

Q = Q(t)

Q = f (distant flow)

Q = f (distant head)

Pump Stations

Other Structures

Hydraulic Structure Computation

General hydraulic structure computational schemes are provided by supplying various stage-discharge relations (observed or computed):

Q is a function of h_{ups}

Q is a function of h₁, h₂

Q is a function of h_{ups}, h_{dns}

$$Q = Q_1 + Q_2$$
 where

$$Q_1 = f(h_1)$$
 and $Q_2 = f(h_2)$

Need tabular values of h_1 , $(h_1 - h_2)$, and Q to ensure that Q = 0 when $h_1 = h_2$.

Flux	H1 = 1	$\mathbf{H1} = 5$	$\mathbf{H1} = 10$
$\mathbf{H2} = 0$	10	50	100
H2 = 1	0	30	70
$\mathbf{H2} = 2$	-10	10	40

For H1 = 1 and H2 = 1, the flux is zero

For H1 = 2 and H2 = 2, the flux is -5

For H1 = 1.5 and H2 = 1.5, the flux is -1.875

Regulation of Structures

- Unregulated and regulated structures can be present in a simulation
- Unregulated structures are always on
- Regulated structures are operated according to a set of rules
- Two types of rules
 - Operation Rules
 - Shift-work Rules

Operation Rules

- A structure may OPEN / CLOSE if the HEAD / FLUX at a trigger location (in GW, OLF, or CHF domain) is ABOVE / BELOW a trigger value and within times (T_start, T_end).
- A two-way trigger: If structure opens above a trigger value, it also closes below trigger value.
- Structure subject to a maximum flow rate
- Multiple (independent or dependent) rules for operating a structure
- Trigger subject to relative difference between heads or flows at two locations

Shift-work Rules

- During a cyclic period (24 hours), shift-work occurs between T_start_shift (9 hours) and T_end_shift (18 hours) when within times (T_start, T_end).
- Structure is operated only during period of shift-work.
- Two options when outside of shift period
 - Structure is always off outside of shift period
 - Structure is maintained in it's on/off state outside of shift period

Channel - Overland Flow Interaction

Free flowing weir, $hc < Z_{BANK}$

HYDRO Geologiga

Surface Storage and Exchange Terms

- $k_{rgo}(h_{ups}) = 0$ at land surface; 1 at top of rills
- Horizontal flow above height h_d
- Horizontal flow obstruction option

Groundwater Interaction Fluxes

Overland - Groundwater flow

$$q_{go} = k_{go} K_{go} (h_g - h_o) = Q_{go} / (\Delta x \Delta y)$$

Channel - Groundwater flow

$$q_{gc} = k_{rgc} K_{GC} (h_G - h_C) = Q_{gc} / LP_{ups}$$

where K_{GC} may be a constant or vary with flow depth. For varying K_{GC} with conductivity K_1 to depth d_1 etc.

$$K_{eff}(Y_{1}) = \frac{K_{1} P_{1} + K_{2} (P_{2} - P_{1}) + K_{3} (P(Y_{1}) - P_{2})}{P(Y_{1})}$$

Leakance varying with depth of flow within Channel Section

Grassy Overflow Region

Groundwater level

$$K_{eff}(Y_1) = \frac{K_1 P_1 + K_2 (P_2 - P_1) + K_3 (P(Y_1) - P_2)}{P(Y_1)}$$

Small Surface Water Bodies

Small Surface-Water Bodies

- A channel node represents a surface-water body
- Tabular stage-area relationship for the surfacewater body provides:
 - Storage term computation
 - Area over which groundwater connection occurs
 - Effective leakance computation for varying leakance with flow-depth
- Perimeter of surface-water body provides length over which overland connection occurs
- Direct connection to channel node
- Connection to other surface-water body via a structure

Direct Flow Links between Nodes

- Connect isolated parts of a domain using a variety of Q-h relationships
- Links can be made between any nodal component (GW, OLF, CHF, and stagestorage nodes)
- A structure formula provides flow in the link (various tabulated Q-h relationships)
- Channel flow equations and all crosssection types also included for links (with storage and OLF / GW interactions)

Other Hydrologic Components

- Interception Storage (bucket model)
- Evapotranspiration
 - Physics based and Parametric options
 - PET may be input or calculated. Calculated methods include:
 - Bare Ground (Senarath et al., WRR 36,3, 2000)
 - Vegetated Surfaces (Penman Montieth)
- Infiltration formulas Kostiakov; Green Ampt; GSVE
- All water features and boundary conditions available in MODFLOW – HFB, FHB, CHD, GHB,OBS extended to OLF and CHF domains
- Recharge Time-Series (RTS) for short-term events
- Reactive Transport capability for all domains

Interception & Evapotranspiration

- Bucket Model for Interception
 - Interception storage = f (LAI)
 - Recharge to ground after interception is full
 - ET_{ref} first met from interception storage
 - Remaining ET from transpiration & evaporation
- Physics-based Evapotranspiration varies with:
 - LAI (transient input)
 - Moisture Content (state variable)
 - Root Zone Distribution Function / Evaporation
 Distribution Function (transient input)
- Parameteric Evapotranspiration
 - ET flux varies with depth to water table

Adaptive Time-Stepping

- For short-term events, utilize refined computational time steps adapted to lie exactly at start and end times of rainfall events (and optionally for rule changes)
- Within hiatus periods, time-step sizes increase depending on problem non-linearity
- Time steps also adapted to accommodate printing times supplied by user
- Averaged hyetographs may be provided for long-term simulations
- Option for restart at non-zero relative time

Time-varying Conditions

- At every stress period, the following may vary:
 - Boundary stresses
 - Evaporation rate
 - Friction coefficients along flow direction(s) for CHF /OLF
 - Rill height
 - Obstruction storage height
 - Reference ET input or calculation parameters
 - Air density; atmospheric pressure; saturated vapor pressure; relative humidity; wind speed; temperature; radiation and soil heat adsorption; mean crop height; Monteith Canopy resistance parameters;
 - Leaf Area Index
 - Coefficients C1, C2, C3 for actual ET
 - Root zone distribution function
 - Crop Coefficient

Discretization – Rectangular or Curvilinear Finite-Difference

Channel/Pipe Discretization – Finite Volume

Holistic Solution for Hydrologic Cycle

Numerical Schemes

- Fully implicit, fully coupled solution with options for linked schemes
- Newton-Raphson Linearization available in addition to Picard option
- Unstructured Matrix Storage Scheme
- Orthomin, GMRES, BiCGSTAB Solution Schemes
- Adaptive Time-Stepping & Output Control
- Flexibility of conceptualization
- Parametric or Physics Based ET
 - •Kostiakoff, Green Ampt, Richards Equation, GSVE
 - Mix-and-match of GW, OLF, CHF domains and boundary conditions
 - Node-I ink method for concentual models

Conjunctive Flow Solution Schemes

Fully Coupled Solution: Linked Solution:

- Non-iterative
- · Iterative

Coupling of Flux or Head at the Interface

Time Stepping:

Time steps for the surface water domain

Time steps for the subsurface domain

Comparison of Fully Coupled and Linked Schemes

- Fairbanks, et al., Comparison of Linked and Fully Coupled Approaches to Simulating Conjunctive Surface / Subsurface Flow and their Interactions – MODFLOW 2001 Conference
- Panday, Multi-Scale Conjunctive Modeling of Surface and Subsurface Flow – MODFLOW 2003 Conference
- Linked approaches give good results only for "small" time-steps

Our Three-Layer Model Conceptualization

Classical Conceptualization of HSPF (after Ford & Hamilton, 1996)

Salient Features:

- Effective for regional and sub-regional applications
- Accounts for all components of the hydrograph including interflow
- Accurately track soil moisture storage, infiltration, and water table position

Pre- and Post-Processing

- ViewHMS provides complete pre- and postprocessing capabilities
 - Create / modify grids, assign properties and boundary conditions manually or automatically
 - Import Shape-Files with various interpolation options to parameterize spatially varying properties
 - Query Access Databases for hydraulics
 - Manipulate input and output data for calibration, and calibration statistics
 - Read model output files for viewing / export to Tecplot, Surfer/Grapher, ArcGIS, Maya, Modflow Binary

Pre- and Post-Processing - Continued

- ArcHMS plug-in for ArcGIS provides direct interface of ArcGIS to model files
- Subsurface setup in any MODFLOW processor
- Fully documented ASCII input files allow manual editing for minor changes, QA, or user development of pre-processing utilities
- Standard ASCII and binary output files based on MODFLOW format. This allows user development of customized postprocessing utilities for interfacing with software of choice

Summary of Model Formulation

- Basin Hydrology 2-D spatially distributed
- Initial abstractions Detention storage;
 Infiltration; Interception; ET
- Infiltration options GSVE; Richards Equation; analytic infiltration formulas
- SW-GW Interaction Holistic; fully coupled; mass conserved (adaptive time-steps); drying of rills provides converged solutions
- GW interactions between sub-basins Solves GW flow rigorously
- Detention Storage Estimated for rills; Includes obstruction storage exclusion

Summary of Model Formulation - Continued

- Runoff generation Diffusive wave; User defined (tabulated) Q-h (or Q-h1h2) via Node-Link method
- Hydrologic routing Holistic, physics-based, spatially-distributed; Node-Link method
- Hydraulic routing Various canal cross-sections;
 Node-Link method
- Hydraulic structures Various options of tabulated input (ViewHMS provides formulas)
- Structure operations Comprehensive
- Screening mode Flexible domain options; Node-Link method; infiltration options; ET options; adaptable boundary conditions

Summary of Model Formulation - Continued

- Groundwater hydraulics
 - Finite-difference / Finite-volume combination;
 Rectangular / Curvilinear Grids
 - Quasi-3D and fully 3-D setups within the same simulation
 - Saturated / unsaturated zone solved fully 3-D holistically
- Adaptive time-stepping to assure convergence within and among all domains
- Flexibility of formulations and boundary conditions to suit problem objectives and available data
- Holistic hydrologic cycle simulation with linked alternatives in an adaptive time-stepping framework

Specifics of SW-GW Interaction Implementation

- Linkage between GW and SW grids: canals, wetlands, sub-basins, infiltration, exfiltration etc. – Fully coupled: GW and SW interaction based on Darcy's Law; SW interactions based on weir equations
- Features at a smaller scale than model grid Finite-Volume connectivity; node-link approach
- Secondary or Tertiary Canals Interaction with GW Holistic, physics-based interactions between all connectivities
- Reservoir Routing and hydraulic routing problems at C&SF structures – Includes high level of complexity

Flood Routing Problems of Kissimmee Basin

- Characterize regional hydrology, calculate lake stages, river flows, discharge from KB into Lake Okeechobee, effects of water control structure operations, impacts of Floridan Aquifer pumping

 Holistic, comprehensive and rigorous SW_GW modeling capability with structures and operations
- Long term simulation (20 to 30 years) and flood event simulation (days) – Adaptive time stepping
- Local and regional levels of resolution multiscale features; node-link approach

Flood Routing Problems of Kissimmee Basin – continued

- Address Uncontrolled / Controlled and Free / Submerged combinations of gate opening and tailwater submergence – Combinations of Structures and Operations
- Incorporate effects of urbanization trends Temporal input of land use related properties, canal properties, or canal existence
- Address phosphorous reduction strategies Comprehensive reactive transport simulation capabilities

Flood Routing Problems of Kissimmee Basin – continued

- Perform screening level investigations –
 Flexibility to suit problem and available data
- Comprehend results and convey them to reviewers, stakeholders and decision makers – Output can be processed for a variety of tools for analysis and visualization

WOSC-ISGM around Orlando, Florida

- Regional ECF groundwater flow model Used for Water Supply Permitting
- Surface-water features are inter-connected or internally drained – Highly Engineered System
- Conjunctive model was needed to assess overall water management, recharge, and impact of FAS withdrawals on surface water bodies
- ECF groundwater model was conceptualized via lumped estimates of hydrologic cycle components

WOSC-ISGM Setup and approach

- WOSC-ISGM expands on flow model conceptualization of ECF model
- Telescope from regional ECF model and include complexities of SAS, surface hydrology & hydraulics
- Grid-size 625 ft areally
- Around 180,000 active nodes
- Model includes 3-D unsaturated zone, physics-based ET, detailed hydraulics and drainage wells (node-link)
- Model implementation performed in 18 months

Subsurface Conceptualization

Model domain and parameterization

- Land-Use / Land
 Cover: LAI, friction,
 RDFI, EDFI, Surface
 Leakance
- Soils Data:

 Moisture retention,
 porosity,
 conductivity, field capacity and wilting point saturations

Other Parameterization and Input

- Geology and Stratigraphy: Aquifer characterization
- DEM: Surface elevation
- Hydrology Databases: Drainage system geometry, connectivity and characteristics, Surface-water body features, and Structure characteristics and operations
- NEXRAD data: Precipitation
- Well permitting databases: Withdrawal estimates
- Various GIS coverages: Local water budget components, agricultural or septic water returns, domestic well withdrawals, Land-Use changes, etc.

Hydrology from ICPR databases

Channel Geometry

Stage-Area Relations

	P	Microsoft Access - [ICPRB: Table]			
					v <u>H</u> elp
		£ - 🖫 🖨 🗅	, 💖 X 🗈 🖺	3 🚿 🗠 😩 🖠	t 👫 🏂 🚇 .
		NNAME	XVAL	YVAL	ZHANDLE
	Þ	WOODLAND	85	19.05	-1
		WOODLAND	80	2.87	-1
ı		WOODLAND	76	1.05840747	-1
		WOODLAND	75	0.91358231	-1
		WOODLAND	74.5	0.73969647	-1
		WOODLAND	73	0.7	-1
		WOODLAND	8	0	-1
		WINSOR	87	26.3808224	-1
		WINSOR	86	22.5119142	-1
		WINSOR	85	21.59972833	-1
		WINSOR	84	20.88222973	-1
		WINSOR	83	20.18237603	-1
		WINSOR	82.7	19.5979562	-1
		WINSOR	11	0	-1
		WEST	70	43.37475481	-1
i		WEST	69	41.62717461	-1
ı		LAICOT		00 0 10075 10	CONTRACTOR AND ADDRESS OF THE PARTY OF THE P

The model was assembled and calibrated to average 1995 conditions and to transient conditions from June 1995 through September 1999 (June 1997 onwards used for verification)

Observation Locations

1-36 Subsurface (36)

37-87 Lake Stage (51)

88 Spring Flux (1)

89-96 Stream Flow (8)

Legend

Surface Water Bodies and Wetlands Subsurface Observation Locations Surface Observation Locations

Surface-Water Flow - Actual Locations

Model Boundary

Surface Water Basin

Results for Daily vs. Monthly Rainfall

Results for Higher Floridan Pumping

Computation Run-times – On Pentium IV, 2000 MHz

- June 1995 through September 1999 with daily precipitation fluctuation – 14 days
- June 1995 through September 1999 with monthly averaged precipitation fluctuation – 3 days
- September 1999 through September 2025 with monthly averaged precipitation fluctuation – 16 days
- NOTE: Today's Pentium machines are at least twice as fast.
- NOTE: Richard's Equation solution (and to some degree physics based ET) provide greatest numerical difficulties

Strengths vs weaknesses for potential KB application

- Holistic approach for multi-scale objectives
- Incorporates general structures and rules of operation
- Flexibility of formulation to adapt to problem objectives and available data
- Adaptive time-stepping for large rapid events
- Rigorous formulation that does not ignore convergence of simulation between domains
- Complex data processing and manipulation
- Diffusion wave neglects inertial effects

Proposed model implementation strategy for the Kissimmee Basin

Elevation data

Rainfall data

LAI, RD, ET_P

- USGS NED or higher resolution project data if available
- Can use NEXRAD data or SFWMD data and Thiessen polygon or SFWMD TIN approach
- Can use existing MIKE SHE database, USGS data, SFWMD data, and/or literature values

- Overland roughness coefficients
- Canal Cross-sections

Canal roughness coefficients

- SFWMD land-use based Manning's data
- Can use available HEC-RAS and MIKE 11 cross-sections
- Can use values from calibrated HEC-RAS, MIKE 11, and AdICPR models or literature values

Canal network

Structure protocols

Canal boundary conditions

- Can use available existing HEC-RAS, MIKE 11, and AdICPR networks and GIS coverages (ArcHMS)
- Can use logic in existing HEC-RAS, MIKE 11, and AdICPR files and SFWMD/USACE rules
- Use available data from DBHYDRO

- Unsaturated Hydraulic Parameters
- Hydrostratigraphy

- Saturated Hydraulic Parameters
- Representation of sinkholes

- Can used existing MIKE SHE database or UofF Soil Database if solving Richard's Equation
- Can use data from existing MODFLOW and MIKE SHE models, USGS studies, SFWMD studies, and any available county studies.
- Can used existing MIKE SHE and MODFLOW files and available surficial aquifer data
- Can rely on available understanding of connection of karst features wit the SAS, ICU, and FAS

 Saturated Zone Boundary Conditions

- Saturated Zone Pumping Rates
- Canal Abstractions (if present)
- Irrigation areas, rates, etc.

- Can use no-flow for surficial aquifer at surface water basin boundary
- Can use available SFWMD data
- Can use available SFWMD data
- Can use available SFWMD data and MIKE SHE irrigation database and results

Basin Delineation

Grid Size

Discretization Assumptions for run-time calculations

- Unsaturated Zone response needs to be explicitly modeled using the Richard's equation formulation
- The Floridan aquifer system can be modeled as a simple head-dependent flux boundary condition

Grid Size

Grid Size (ft)	No. Columns	No. Rows	No. Active Cells
500	~ 550	~986	~252,636
1000	275	493	63,159
2000	~ 138	~ 247	~15,790
5000	~ 55	~ 99	~2,527

Example Run Times

Model	Notes	No. Active Cells	CPU Speed	Approximate Run Time (hrs/yr)
Mobile Bay	Pseudo soil functions, very detailed		~1 GHz	55
WOSC	Richard's Equations, daily rainfall	~180,000	~2 GHz	78
WOSC	Richard's Equations, avg. monthly rainfall	~180,000	~2 GHz	17
WOSC	Richard's Equations, avg. monthly rainfall	~180,000	~2 GHz	15

Estimated Run Times

	Grid Size (ft)	Col, Row, Layers	No. Active Cells	Approximate Run Time (hrs/yr) 3 GHz
The Section of the Se	500	~ 550, 986, 4 (+1 OL)	~1,263,180	~76
THE PROPERTY OF	1000	275, 493, 4 (+1 OL)	315,795	19
STAN SONT BUTTONES	2000	~ 138, 247, 4 (+1 OL)	~78,950	~5
STATE OF CHANGE	5000	~ 55, 99, 4 (+1 OL)	~12,635	~1

Model development and calibration

Task	Conceptual Models	Detailed Models
Data assimilation/ model development	2 weeks to several months	3 to 4 months
Calibration	weeks to months	3 to 4 months
Scenarios	days	days to weeks

Optimization

- Non-proprietary input and output files permit interfacing with PEST for parameter estimation, sensitivity analyses, uncertainty analyses, and optimization
 - A interface between MODHMS and standalone optimization package was developed for SJRWMD
 - UCODE or PEST could be used to optimize operation rules for KRB

Conclusions

- MODHMS has been successfully applied in similar regions of Florida
- MODHMS could be applied to the KRB in conceptual and detailed applications
- MODHMS has a rich set of options that would allow the model development to be tailored to the problem and aggressive project schedule
- MODHMS can deal with rainfall, ET, runoff, canal-aquifer interactions, surface-subsurface exchange, and flooding in a natural manner using a mass-conservative physics-based approach

Conclusions

- The level of detail in the detailed model(s) must be consistent with the project schedule and may require an iterative approach during model development
- Recommend applying MODHMS using the psuedo-soil functions
- Recommend calibrating the detailed model(s) using a coarse discretization (≥2000 ft) and using a final discretization of ~1,000 ft
- It may be possible to use PEST or UCODE to optimize KRB operation/management rules (the non-proprietary format will facilitate this)

Discussion